Abstract

(1) Background: Peripheral nerve injuries represent a major clinical challenge. If nerve ends retract, there is no spontaneous regeneration and grafts are required to proximate the nerve ends and give continuity to the nerve. (2) Methods: GDNF-loaded NPs were characterized physicochemically. For that, NPs stability at different pH's was assessed, and GDNF release was studied through ELISA. In vitro studies are performed with Schwann cells, and the NPs are labeled with fluorescein-5(6)-isothiocyanate for uptake experiments with SH-SY5Y neural cells. (3) Results: GDNF-loaded NPs are stable in physiological conditions, releasing GDNF in a two-step profile, which is beneficial for nerve repair. Cell viability is improved after 1 day of culture, and the uptake is near 99.97% after 3 days of incubation. (4) Conclusions: The present work shows the efficiency of using CMCht/PAMAM NPs as a GDNF-release system to act on peripheral nerve regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.