Abstract

Prediction of glaucomatous visual field loss has significant clinical benefits because it can help with early detection of glaucoma as well as decision-making for treatments. Glaucomatous visual loss is conventionally captured through visual field sensitivity (VF ) measurement, which is costly and time-consuming. Thus, existing approaches mainly predict future VF utilizing limited VF data collected in the past. Recently, optical coherence tomography (OCT) has been adopted to measure retinal layers thickness (RT ) for considerably more low-cost treatment assistance. There then arises an important question in the context of ophthalmology: are RT measurements beneficial for VF prediction? In this paper, we propose a novel method to demonstrate the benefits provided by RT measurements. The challenge is management of the two heterogeneities of VF data and RT data as RT data are collected according to different clinical schedules and lie in a different space to VF data. To tackle these heterogeneities, we propose latent progression patterns (LPPs), a novel type of representations for glaucoma progression. Along with LPPs, we propose a method to transform VF series to an LPP based on matrix factorization and a method to transform RT series to an LPP based on deep neural networks. Partial VF and RT information is integrated in LPPs to provide accurate prediction. The proposed framework is named deeply-regularized latent-space linear regression (\em DLLR). We empirically demonstrate that our proposed method outperforms the state-of-the-art technique by 12% for the best case in terms of the mean of the root mean square error on a real dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.