Abstract
We study the growth kinetics of glassy correlations in a structural glass by monitoring the evolution, within mode-coupling theory, of a suitably defined three-point function χ_{C}(t,t_{w}) with time t and waiting time t_{w}. From the complete wave-vector-dependent equations of motion for domain growth, we pass to a schematic limit to obtain a numerically tractable form. We find that the peak value χ_{C}^{P} of χ_{C}(t,t_{w}), which can be viewed as a correlation volume, grows as t_{w}^{0.5}, and the relaxation time as t_{w}^{0.8}, following a quench to a point deep in the glassy state. These results constitute a theoretical explanation of the simulation findings of Parisi [J. Phys. Chem. B 103, 4128 (1999)JPCBFK1520-610610.1021/jp983967m] and Kob and Barrat [Phys. Rev. Lett. 78, 4581 (1997)PRLTAO0031-900710.1103/PhysRevLett.78.4581], and they are also in qualitative agreement with Parsaeian and Castillo [Phys. Rev. E 78, 060105(R) (2008)PLEEE81539-375510.1103/PhysRevE.78.060105]. On the other hand, if the quench is to a point on the liquid side, the correlation volume grows to saturation. We present a similar calculation for the growth kinetics in a p-spin spin glass mean-field model where we find a slower growth, χ_{C}^{P}∼t_{w}^{0.13}. Further, we show that a shear rate γ[over ̇] cuts off the growth of glassy correlations when t_{w}∼1/γ[over ̇] for quench in the glassy regime and t_{w}=min(t_{r},1/γ[over ̇]) in the liquid, where t_{r} is the relaxation time of the unsheared liquid. The relaxation time of the steady-state fluid in this case is ∝γ[over ̇]^{-0.8}.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.