Abstract
Driven by a real-world application in the capital-intensive glass container industry, this paper provides the design of a new hybrid evolutionary algorithm to tackle the short-term production planning and scheduling problem. The challenge consists of sizing and scheduling the lots in the most cost-effective manner on a set of parallel molding machines that are fed by a furnace that melts the glass. The solution procedure combines a multi-population hierarchically structured genetic algorithm (GA) with a simulated annealing (SA), and a tailor-made heuristic named cavity heuristic (CH). The SA is applied to intensify the search for solutions in the neighborhood of the best individuals found by the GA, while the CH determines quickly values for a relevant decision variable of the problem: the processing speed of each machine. The results indicate the superior performance of the proposed approach against a state-of-the-art commercial solver, and compared to a non-hybridized multi-population GA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.