Abstract

Silicon (Si) anode materials have attracted substantial interest due to their high theoretical capacity. Here, the growth of helical Si@Cu3Si nanorod arrays via glancing angle deposition (GLAD) followed by an annealing process is reported. Pre-deposited Cu atoms were driven into Si-nanorods and successfully reacted with Si to form a Si-Cu alloy at a high temperature. By varying the rotation rate and annealing temperature, the resultant Si@Cu3Si nanorod arrays showed a reasonably accessible surface area with precise control spacing behavior in favor of accommodating Si volume expansion. Meanwhile, the Si@Cu3Si anode materials showed higher electrical conductivity, facilitating Li+ ion diffusion and electron transfer. The Si@Cu3Si nanorod arrays in half cells exhibited a volumetric capacity as high as 3350.1 mA h cm-3 at a rate of 0.25 C and could maintain 1706.7 mA h cm-3 after 100 cycles, which are superior to those of pristine Si materials. This facile and innovative technology provided new insights into the development of Si-based electrode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.