Abstract
We consider four families of pancake graphs, which are Cayley graphs, whose vertex sets are either the symmetric group on n objects or the hyperoctahedral group on n objects and whose generating sets are either all reversals or all reversals inverting the first k elements (called prefix reversals). We find that the girth of each family of pancake graphs remains constant after some small threshold value of n .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.