Abstract

Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), has been extensively used in traditional oriental medicine for the prevention and treatment of aging-related disorders for over 2000 years. Accumulating evidence suggests that ginsenosides such as Rg1 and Rb1, which are the pharmacologically active ingredients of ginseng, modulate neurotransmission. Synapsins are abundant phosphoproteins essential for regulating neurotransmitter release. All synapsins contain a short amino-terminal domain A that is highly conserved and phosphorylated by cAMP-dependent protein kinase (PKA), which plays a key role in regulating neurotransmitter release. In the present study, we demonstrated that both Rg1 and Rb1 increased neurotransmitter release in undifferentiated and differentiated PC12 cells. However, in the presence of the PKA inhibitor H89, Rg1, but not Rb1, still induced neurotransmitter release. Moreover, Rb1, but not Rg1, enhanced the phosphorylation of synapsins via PKA pathway. In summary, Rb1 promotes neurotransmitter release by increasing the phosphorylation of synapsins through the PKA pathway, whereas the similar effects observed with Rg1 are independent of the phosphorylation of synapsins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.