Abstract
Data extracted from software repositories is used intensively in Software Engineering research, for example, to predict defects in source code. In our research in this area, with data from open source projects as well as an industrial partner, we noticed several shortcomings of conventional data mining approaches for classification problems: (1) Domain experts’ acceptance is of critical importance, and domain experts can provide valuable input, but it is hard to use this feedback. (2) Evaluating the quality of the model is not a matter of calculating AUC or accuracy. Instead, there are multiple objectives of varying importance with hard to quantify trade-offs. Furthermore, the performance of the model cannot be evaluated on a per-instance level in our case, because it shares aspects with the set cover problem. To overcome these problems, we take a holistic approach and develop a rule mining system that simplifies iterative feedback from domain experts and can incorporate the domain-specific evaluation needs. A central part of the system is a novel multi-objective anytime rule mining algorithm. The algorithm is based on the GRASP-PR meta-heuristic but extends it with ideas from several other approaches. We successfully applied the system in the industrial context. In the current article, we focus on the description of the algorithm and the concepts of the system. We make an implementation of the system available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.