Abstract

AbstractGravimetric methods are expected to play a decisive role in geophysical modeling of the regional crustal structure applied to geoneutrino studies. GIGJ (GOCE Inversion for Geoneutrinos at JUNO) is a 3‐D numerical model constituted by ~46 × 103 voxels of 50 × 50 × 0.1 km, built by inverting GOCE (Gravity field and steady‐state Ocean Circulation Explorer) gravimetric data over the 6° × 4° area centered at the JUNO (Jiangmen Underground Neutrino Observatory) experiment, currently under construction in the Guangdong Province (China). The a priori modeling is based on the adoption of deep seismic sounding profiles, receiver functions, teleseismic P wave velocity models, and Moho depth maps, according to their own accuracy and spatial resolution. The inversion method allowed for integrating GOCE data with the a priori information and some regularization conditions through a Bayesian approach and a stochastic optimization. GIGJ fits the highly accurate and homogeneously distributed GOCE gravity data with a ~1 mGal standard deviation of the residuals, compatible with the observation accuracy. GIGJ provides a site‐specific subdivision of the crustal layers masses, of which uncertainties include estimation errors, associated to the gravimetric solution, and systematic uncertainties, related to the adoption of a fixed sedimentary layer. A consequence of this local rearrangement of the crustal layer thicknesses is a ~21% reduction and a ~24% increase of the middle and lower crust geoneutrino signal, respectively. The geophysical uncertainties of geoneutrino signals at JUNO produced by unitary uranium and thorium abundances distributed in the upper, middle, and lower crust are reduced by 77%, 55%, and 78%, respectively. The numerical model is available at this site (http://www.fe.infn.it/radioactivity/GIGJ).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.