Abstract

Barocaloric effect in BaTiO3 single crystal is studied by a thermodynamic phenomenological model. It is demonstrated that a giant barocaloric effect can be achieved near room temperature with an adiabatic temperature change of more than 3 K and a temperature span about 50 K. As expected, the electrocaloric peak can be shifted towards room temperature by pressure. However, a slight reduction of the electrocaloric peak is found in contrast to relaxor ferroelectrics and LiNbO3. We believe that our findings could open a potential route by combining the barocaloric effect and pressure-mediated electrocaloric effect in BaTiO3 single crystal for cooling devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.