Abstract

Optical non-linearities usually appear for large intensities, but discrete transitions allow for giant non-linearities operating at the single photon level. This has been demonstrated in the last decade for a single optical mode with cold atomic gases, or single two-level systems coupled to light via a tailored photonic environment. Here we demonstrate a two-modes giant non-linearity by using a three-level structure in a single semiconductor quantum dot (QD) embedded in a photonic wire antenna. The large coupling efficiency and the broad operation bandwidth of the photonic wire enable us to have two different laser beams interacting with the QD in order to control the reflectivity of a laser beam with the other one using as few as 10 photons per QD lifetime. We discuss the possibilities offered by this easily integrable system for ultra-low power logical gates and optical quantum gates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.