Abstract

We propose that the hybridization between two sets of Rashba bands can lead to an unconventional topology where the two Fermi circles from different bands own in-plane helical spin textures with the same chiralities, and possess group velocities with the same directions. Under the weak spin injection, the two Fermi circles both give the positive contributions to the spin-to-charge conversion and thus induce the giant inverse Rashba-Edelstein Effect with large conversion efficiency, which is very different from the conventional Rashba-Edelstein Effect. More importantly, through the first-principles calculations, we predict that monolayer OsBi2 could be a good candidate to realize the giant inverse Rashba-Edelstein Effect. Our studies not only demonstrate a new mechanism to achieve highly efficient spin-to-charge conversion in spintronics, but also provide a promising material to realize it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.