Abstract

Fluorescent metallosupramolecules have received considerable attention due to their precisely controlled dimensions as well as the tunable photophysical and photochemical properties. However, phosphorescent analogues are still rare and limited to small structures with low-temperature phosphorescence. Herein, we report the self-assembly and photophysical studies of a giant, discrete metallosupramolecular concentric hexagon functionalized with six alkynylplatinum(II) bzimpy moieties. With a size larger than 10 nm and molecular weight higher than 26 000 Da, the assembled terpyridine-based supramolecule displayed phosphorescent emission at room temperature. Moreover, the supramolecule exhibited enhanced aggregation-induced phosphorescent emission compared to the ligand by tuning the aggregation states through intermolecular interactions and significant enhancement of emission to CO2 gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.