Abstract

Ghrelin is an endogenous growth hormone secretagogue (GHS) causing release of GH from pituitary somatotropes through the GHS receptor. Secretion of GH is linked directly to intracellular free Ca(2+) concentration ([Ca(2+)]i), which is determined by Ca(2+) influx and release from intracellular Ca(2+) storage sites. Ca(2+) influx is via voltage-gated Ca(2+) channels, which are activated by cell depolarization. Membrane potential is mainly determined by transmembrane K(+) channels. The present study investigates the in vitroeffect of ghrelin on membrane voltage-gated K(+) channels in the GH3 rat somatotrope cell line. Nystatin-perforated patch clamp recording was used to record K(+) currents under voltage-clamp conditions. In the presence of Co(2+) (1 mM, Ca(2+) channel blocker) and tetrodotoxin (1 microM, Na(+) channel blocker) in the bath solution, two types of voltage-gated K(+) currents were characterized on the basis of their biophysical kinetics and pharmacological properties. We observed that transient K(+) current (IA) represented a significant proportion of total K(+) currents in some cells, whereas delayed rectifier K(+) current (IK) existed in all cells. The application of ghrelin (10 nM) reversibly and significantly decreased the amplitude of both IA and IK currents to 48% and 64% of control, respectively. Application of apamin (1 microM, SK channel blocker) or charybdotoxin (1 microM, BK channel blocker) did not alter the K(+) current or the response to ghrelin. The ghrelin-induced reduction in K(+) currents was not affected by PKC and PKA inhibitors. KT5823, a specific PKG inhibitor, totally abolished the K+ current response to ghrelin. These results suggest that ghrelin-induced reduction of voltage-gated K(+) currents in GH3 cells is mediated through a PKG-dependent pathway. A decrease in voltage-gated K(+) currents may increase the frequency, duration, and amplitude of action potentials and contribute to GH secretion from somatotropes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.