Abstract

Next-generation sequencing (NGS) technologies allow the cost-effective sequencing of whole genomes and have expanded the scope of genomics to novel applications, such as the genome-wide characterization of intraspecific polymorphisms and the rapid mapping and identification of point mutations. Next-generation sequencing platforms, such as the Illumina HiSeq2000 platform, are now commercially available at affordable prices and routinely produce an enormous amount of sequence data, but their wide use is often hindered by a lack of knowledge on how to manipulate and process the information produced. In this review, we focus on the strategies that are available to geneticists who wish to incorporate these novel approaches into their research but who are not familiar with the necessary bioinformatic concepts and computational tools. In particular, we comprehensively summarize case studies where the use of NGS technologies has led to the identification of point mutations, a strategy that has been dubbed "mapping-by-sequencing", and review examples from plants and other model species such as Caenorhabditis elegans, Saccharomyces cerevisiae, and Drosophila melanogaster. As these technologies are becoming cheaper and more powerful, their use is also expanding to allow mutation identification in species with larger genomes, such as many crop plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.