Abstract

Vision-based drone-view object detection suffers from severe performance degradation under adverse conditions (e.g., foggy weather, poor illumination). To remedy this, leveraging complementary mmWave radar has become a trend. However, existing fusion approaches seldom apply to drones due to i) the aggravated sparsity and noise of point clouds from low-cost commodity radars, and ii) explosive sensing data and intensive computations leading to high latency. To address these issues, we design Geryon, an edge assisted object detection system on drones, which utilizes a suit of approaches to fully exploit the complementary advantages of camera and mmWave radar on three levels: (i) a novel multi-frame compositing approach utilizes camera to assist radar to address the aggravated sparsity and noise of radar point clouds; (ii) a saliency area extraction and encoding approach utilizes radar to assist camera to reduce the bandwidth consumption and offloading latency; (iii) a parallel transmission and inference approach with a lightweight box enhancement scheme further reduces the offloading latency while ensuring the edge-side accuracy-latency trade-off by the parallelism and better camera-radar fusion. We implement and evaluate Geryon with four datasets we collect under foggy/rainy/snowy weather and poor illumination conditions, demonstrating its great advantages over other state-of-the-art approaches in terms of both accuracy and latency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.