Abstract

AbstractGiant chickweed [Myosoton aquaticum (L.) Moench], a troublesome broadleaf weed species, is widespread in winter wheat (Triticum aestivum L.) fields in China. However, limited information is available on its germination and seedling emergence ecology. Thus, three M. aquaticum populations (JS, HN, and AH) from different geographic regions were studied under laboratory conditions to determine the effects of different environmental factors on germination or seedling emergence. The seeds germinated at a relatively wide constant temperature range of 5 to 25 C; however, the optimal temperature for germination varied among the populations. Compared with constant temperatures, fluctuating temperatures with the same mean significantly improved the final germination of all populations. Light was not required for germination. The seeds germinated under a wide pH range of 3 to 10, and the optimum pH was 6 to 7, with a final germination percentage of 81% to 95%. The seeds of all populations showed similar sensitivities to osmotic potential and similar high tolerances of saline conditions. The seedling emergence of all populations decreased with increasing burial depth, and no emergence was observed when the seeds were buried more than 3 cm, but the AH population showed higher sensitivity to burial depth than the others. The results generated from this study will contribute to the development of integrated M. aquaticum management strategies for winter wheat fields in China, and deep plowing and late sowing of autumn-sown wheat are suggested for managing M. aquaticum, as it showed lower germination at a low temperature and under relatively deep burial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.