Abstract

Males of the MyK-103 line of transgenic mice are fertile and sire litters of normal size, but they never transmit the transgene, whereas females transmit the transgene with normal frequency. The chromosome originally bearing the transgene can be transmitted through the male germ line, but only after the transgene is deleted or rearranged by intrachromosomal recombination. The transgene encodes a functional herpes simplex virus (HSV) thymidine kinase gene that causes sperm infertility when expressed in postmeiotic germ cells. Immunocytochemistry revealed clones of germ cells that fail to express HSV thymidine kinase. We postulate that these cells arose by transgene deletion in embryonic germ cells and postnatal spermatogonial stem cells and that they are responsible for the normal fertility of MyK-103 males. The frequency of recombination events at the integration locus suggests that it contains a hotspot for mitotic recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.