Abstract
Deposition of mine tailings in a cold climate requires precautions as temporary sub-zero temperatures can imply considerable consequences to the storage due to creation of permafrost. The risk of creating man-made permafrost lenses due to tailings deposition exists even in regions with no natural permafrost, as material being frozen during winter might not fully thaw by the following summer. When such frozen layers thaw during later longer warmer periods, excess pore water pressure and large settlements might develop. Such implications close to the dam structure have to be avoided and therefore the risk of generating permafrost should be reduced. This paper describes a geothermal model for one-dimensional heat conduction analysis. The model is able to simulate the temperature profile in tailings where the surface elevation is constantly increased due to deposition. At the tailings surface, the boundary condition is the air temperature changing over time during the year. Air temperatures, tailings deposition schedule and tailings properties are given as input to the model and can easily be changed and applied to specific facilities. The model can be used for tailings facilities in cold regions, where the effects of tailings deposition on the temperature regime are of interest. Findings can improve tailings management by explaining man-made permafrost generation. The model can also aid in setting up appropriate deposition schedules and to prevent generation of permafrost layers.
Highlights
Tailings management in a cold climate requires certain precautions
Tailings deposition must be conducted in a way that freezing/thawing does not add to additional risks in tailings dam performance
As the unfrozen tailings had a constant temperature of + 0.1 °C it is difficult to show the freezing front for the June-profile graphically
Summary
Tailings management in a cold climate requires certain precautions. Freezing of pipes, malfunctioning instrumentation or heavy snowfall can all imply disturbances in tailings operations. Tailings deposition must be conducted in a way that freezing/thawing does not add to additional risks in tailings dam performance. At sub-zero temperatures heat is transmitted out of the tailings and a frost front penetrates downwards. In summer heat is added to the tailings from the air and the frozen tailings thaw. In areas without natural permafrost the added heat during summer is greater than what is released during winter. The thaw depth reaches the maximum frost depth formed during winter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.