Abstract

Microgravity monitoring is a valuable tool for mapping the redistribution of subsurface mass and for assessing changes in fluid recharge from reservoir boundaries associated with geothermal exploitation. To further the development of a high-precision absolute/relative hybrid gravity-measurement technique, we conducted measurements using an absolute gravimeter in two geothermal fields in Japan. The absolute gravity measurements were performed in the central production areas to directly measure gravity changes caused by fluid withdrawal. We succeeded in measuring long-term trends within an accuracy of a few microgals in the Okuaizu and Ogiri fields, which have been producing electricity for several years. Absolute measurements in the center of the field provide reliable and local reference datum anchor points for more widely distributed relative gravity measurements. In the Ogiri field, we carried out time-lapse hybrid measurements with this combination of absolute and relative gravimetry and delineated the spatial distributions of long- and short-term changes. The long-term changes are relatively small, considering the four-year observation interval. This suggests a near balance between the mass withdrawal rate from wells and mass recharge from peripheral regions. The apparent balance is reproduced fairly well by a preliminary numerical reservoir simulation study. The observed long- and short-term changes are thought to be useful constraints for planned history-matching studies based on refined reservoir models with greater spatial resolution that incorporate detailed well-by-well production histories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.