Abstract

Suction caissons consist of large cylindrical buckets made from steel. In order to serve as foundations for various offshore structures, suction caissons are pushed into the seabed under pressure differential exerted on their lid by an imposed suction. Despite their wide use in the oil and gas industry, there are still some uncertainties regarding their installation process as a result of changes in seabed profiles such as the existence of low permeability layers as well as the variation in soil properties with depth (e.g. permeability decreasing with depth due to an increase in soil density). It is known that seepage conditions play a pivotal role in the installation process, particularly in sand. Indeed, pressure gradients generated by the imposed suction inside the caisson cavity cause an overall reduction in the soil resistance around the caisson wall and at caisson tip, thereby assisting the penetration into the seabed. Successful installation of caisson foundations relies on accurate prediction of soil conditions, in particular soil shear resistance during the installation. Existing knowledge of the prediction of soil conditions and required suction during caisson installation has some limitations which often resulted into rather conservative design methods. Most design procedures used to control suction during caisson installation assume an isotropic and homogenous seabed profile. Moreover, the actual variation of pressure gradient around the caisson wall at different penetration depths is often ignored, although it significantly affects soil resistance. Natural seabed can possess a heterogeneous property where it may comprise of different layers of soils including the presence of layers with low-permeability i.e. clay or silt. In this paper, the effect of seepage on soil conditions during caisson installation is studied within the frame of the presence of a substratum that consists of silt. Suction induced seepage described throughout the installation process and its effects on frictional and tip resistance are considered. For this purpose, a numerical simulation is conducted on a normalised geometry of the suction caisson and surrounding soil, at different penetration depths. The distribution of pressure gradient on both inside and outside of the caisson wall is taken into consideration in both soil shear and tip resistance. Particular conclusions will be drawn on the implications of the presence of a low permeability silt layer on caisson installation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.