Abstract

A CAS-SCF algorithm based on molecular orbitals that conserve their physical nature during the iterative process has been recently proposed. The algorithm is based on the iterative partial diagonalization of the one-body density matrix obtained from a SuperCI-like procedure. If localized guess orbitals are used, the locality property is conserved by the final orbitals, and the algorithm is particularly suitable for the study of local processes (e.g., bond breaking) in large molecules. In this work, it is shown that the localized orbitals obtained in such a way can be supplied to a standard CAS-SCF geometry-optimization package, in order to find the optimal geometry relaxation with a given local active space. The procedure is illustrated in the case of the rotation of the CH 2 group around the CC double bond in the acroleine molecule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.