Abstract

Real-world tasks require coordination of working memory, decision-making, and planning, yet these cognitive functions have disproportionately been studied as independent modular processes in the brain. Here, we propose that contingency representations, defined as mappings for how future behaviors depend on upcoming events, can unify working memory and planning computations. We designed a task capable of disambiguating distinct types of representations. In task-optimized recurrent neural networks, we investigated possible circuit mechanisms for contingency representations and found that these representations can explain neurophysiological observations from the prefrontal cortex during working memory tasks. Our experiments revealed that human behavior is consistent with contingency representations and not with traditional sensory models of working memory. Finally, we generated falsifiable predictions for neural data to identify contingency representations in neural data and to dissociate different models of working memory. Our findings characterize a neural representational strategy that can unify working memory, planning, and context-dependent decision-making.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.