Abstract

Soft and biological matter come in a variety of shapes and geometries. When soft surfaces that do not fit into each other due to a mismatch in Gaussian curvatures form an interface, beautiful geometry-induced patterns are known to emerge. In this paper, we study the effect of geometry on the dynamical response of soft surfaces moving relative to each other. Using a simple experimental scheme, we measure friction between a highly bendable thin polymer sheet and a hydrogel substrate. At this soft and low-friction interface, we find a strong dependence of friction on the relative geometry of the two surfaces-a flat sheet experiences significantly larger friction on a spherical substrate than on flat or cylindrical substrate. We show that the stress developed in the sheet due to its geometrically incompatible confinement is responsible for the enhanced friction. This mechanism also leads to a transition in the nature of friction as the sheet radius is increased beyond a critical value. Our finding reveals a hitherto unnoticed mechanism based on an interplay between geometry and elasticity that may influence friction significantly in soft, biological, and nanoscale systems. In particular, it provokes us to reexamine our understanding of phenomena such as the curvature dependence of biological cell mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.