Abstract
We report a modulation of the in-plane magnetotransport in artificial manganite superlattice [(NdMnO3)n/(SrMnO3)n/(LaMnO3)n]m by varying the layer thickness n while keeping the total thickness of the structure constant. Charge transport in these heterostructures is confined to the interfaces and occurs via variable range hopping. Upon increasing n, the interfacial separation rises, leading to a suppression of the electrostatic screening between carriers of neighboring interfaces and the opening of a Coulomb gap at the Fermi level (EF). The high-field magnetoresistance (MR) is universally negative due to progressive spin alignment. However, at a critical thickness of n = 5 unit cells (u.c.), an exchange field coupling between ferromagnetically ordered interfaces results in positive MR at low magnetic field (H). Our results demonstrate the ability to geometrically tune the electrical transport between regimes dominated by either charge or spin correlations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.