Abstract

Test field system calibration will be a fundamental part of the future photogrammetric production line. Accurate calibration and performance evaluations are necessary for fully assessing the stability and accuracy of digital sensing techniques. In this paper, a method of comprehensive geometric calibration in a test field has been developed and empirically tested using eight image blocks collected with three UltraCamD digital large format photogrammetric cameras. Permanent photogrammetric test fields form the basis of the method. Important components of the method are determination of system parameters, evaluation of systematic errors, and assessment of geometric accuracy. The results showed that UltraCamD images contained systematic deformations that could not be modeled with single lens additional parameter models. Good point determination accuracy was obtained despite the systematic errors; the typical accuracy was 2–3 μm in image space in the horizontal coordinates and 0.05–0.09‰ of the object distance in height. One of the cameras had significantly poorer performance. In the worst cases, the horizontal accuracy was 5 μm in image space and the height accuracy was 0.18‰ of the object distance. The analog cameras gave better results than the UltraCamD, but the development of appropriate mathematical models for UltraCamD as well as improvements in digital sensors may change the situation in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.