Abstract
We consider ordinary differential equations (ODEs) with a known Lyapunov function V. To ensure that a numerical integrator reflects the correct dynamical behaviour of the system, the numerical integrator should have V as a discrete Lyapunov function. Only second-order geometric integrators of this type are known for arbitrary Lyapunov functions. In this paper we describe projection-based methods of arbitrary order that preserve any given Lyapunov function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.