Abstract

We introduce new concepts and properties of lightlike distributions and foliations (of dimension and co-dimension 1) in a space-time manifold of dimension $n$, from a purely geometric point of view. Given an observer and a lightlike distribution $\Omega $ of dimension or co-dimension 1, its lightlike direction is broken down into two vector fields: a timelike vector field $U$ representing the observer and a spacelike vector field $S$ representing the relative direction of propagation of $\Omega $ for this observer. A new distribution $\Omega_U^-$ is defined, with the opposite relative direction of propagation for the observer $U$. If both distributions $\Omega $ and $\Omega _U^-$ are integrable, the pair \Omega ,\Omega_U^- $ represents the wave fronts of a stationary wave for the observer $U$. However, we show in an example that the integrability of $\Omega $ does not imply the integrability of $\Omega_U^-$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.