Abstract

The high hardness, melting temperature and environmental resistance of most ceramic materials makes them well-suited for propulsion, tribilogical and protective applications. However, these same attributes pose difficulties for manufacturing and machining of ceramics and ultimately limit the achievable design space of these materials. Recently, a new class of preceramic photopolymers has been developed that enables additive manufacturing of ceramics using commercially available stereolithography systems. By consolidating preceramic monomers via layer-wise exposure to ultraviolet light and subsequently pyrolyzing under an inert atmosphere to form a ceramic, this method allows for complex geometry parts that cannot be produced with traditional sintering, pressing or vapor infiltration processes. In order to retain geometric fidelity and generate flaw-free microstructures, volumetric and gravimetric changes during the polymer-to-ceramic conversion must be quantified. To this end, we present x-ray micro-computed tomography (micro-CT) measurements of the dimensional stability and uniformity of additively manufactured silicon-based ceramics as a function of geometry and processing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.