Abstract

It remains difficult to predict when which patients with abdominal aortic aneurysm (AAA) will require surgery. The aim was to study the accuracy of geometric and biomechanical analysis of small AAAs to predict reaching the threshold for surgery, diameter growth rate and rupture or symptomatic aneurysm. 189 patients with AAAs of diameters 40–50 mm were included, 161 had undergone two CTAs. Geometric and biomechanical variables were used in prediction modelling. Classifications were evaluated with area under receiver operating characteristic curve (AUC) and regressions with correlation between observed and predicted growth rates. Compared with the baseline clinical diameter, geometric-biomechanical analysis improved prediction of reaching surgical threshold within four years (AUC 0.80 vs 0.85, p = 0.031) and prediction of diameter growth rate (r = 0.17 vs r = 0.38, p = 0.0031), mainly due to the addition of semiautomatic diameter measurements. There was a trend towards increased precision of volume growth rate prediction (r = 0.37 vs r = 0.45, p = 0.081). Lumen diameter and biomechanical indices were the only variables that could predict future rupture or symptomatic AAA (AUCs 0.65–0.67). Enhanced precision of diameter measurements improves the prediction of reaching the surgical threshold and diameter growth rate, while lumen diameter and biomechanical analysis predicts rupture or symptomatic AAA.

Highlights

  • It remains difficult to predict when which patients with abdominal aortic aneurysm (AAA) will require surgery

  • Several studies have observed that the volume of an AAA may be a more sensitive descriptor of growth than its diameter, and that the volume growth rate is easier to predict than the diameter growth r­ ate[14,15,16,17,18]

  • The least absolute shrinkage and selection operator (LASSO) model could achieve 100% sensitivity and 21% specificity, whereas the clinical diameter reference did not reach 100% sensitivity with any retained specificity

Read more

Summary

Introduction

It remains difficult to predict when which patients with abdominal aortic aneurysm (AAA) will require surgery. The aim was to study the accuracy of geometric and biomechanical analysis of small AAAs to predict reaching the threshold for surgery, diameter growth rate and rupture or symptomatic aneurysm. Compared with the baseline clinical diameter, geometric-biomechanical analysis improved prediction of reaching surgical threshold within four years (AUC 0.80 vs 0.85, p = 0.031) and prediction of diameter growth rate (r = 0.17 vs r = 0.38, p = 0.0031), mainly due to the addition of semiautomatic diameter measurements. Enhanced precision of diameter measurements improves the prediction of reaching the surgical threshold and diameter growth rate, while lumen diameter and biomechanical analysis predicts rupture or symptomatic AAA. The future indication for surgery and rupture risk could be predicted with increased precision, surveillance and surgery could be personalized, potentially creating safer and more cost-effective management algorithms. None of these alternative markers have been included into clinical management algorithms

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.