Abstract

Gross-Pitaevskii and nonlinear Hartree equations are equations of nonlinear Schroedinger type, which play an important role in the theory of Bose-Einstein condensation. Recent results of Aschenbacher et. al. [AFGST] demonstrate, for a class of 3- dimensional models, that for large boson number (squared L^2 norm), N, the ground state does not have the symmetry properties as the ground state at small N. We present a detailed global study of the symmetry breaking bifurcation for a 1-dimensional model Gross-Pitaevskii equation, in which the external potential (boson trap) is an attractive double-well, consisting of two attractive Dirac delta functions concentrated at distinct points. Using dynamical systems methods, we present a geometric analysis of the symmetry breaking bifurcation of an asymmetric ground state and the exchange of dynamical stability from the symmetric branch to the asymmetric branch at the bifurcation point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.