Abstract

AbstractThe Rümker region (41–45°N, 49–69°W) is located in northern Oceanus Procellarum of the Moon. Mons Rümker is the most distinctive geological feature in the area. The region is characterized by prolonged lunar volcanism (Late Imbrian Period to Eratosthenian Period), forming multiple geologic units in the area, including very low‐Ti to low‐Ti mare basalts, high‐Ti mare basalts, and volcanic complexes. Each geologic unit has distinct element composition and mineral assemblages. The Rümker region, overlying the Procellarum KREEP Terrain, was selected as the landing region for China's Chang'E‐5 lunar sample return mission. Prelanding analyses of the geologic context and scientific potential are reported in this contribution. We conducted detailed geological mapping using image, spectral, and altimetry data. Fourteen geological units were defined, a geologic map was constructed, and the geologic history was outlined. The western mare units (Im1, Im2, and Im3) are Imbrian‐aged (~3.4–3.5 Ga) representing the major stage of lunar mare eruptive volcanism. The eastern young mare units (Em3 and Em4; <2 Ga) are among the youngest mare basalts on the Moon. They have never been explored in situ or studied in the laboratory. We suggest that samples returned from the eastern mare unit (Em4) could answer many fundamental questions and that this unit should be listed as the top priority landing site for Chang'E‐5 sample return mission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.