Abstract

Controlled‐source electromagnetic induction is a geophysical technique used to identify anthropogenic and natural features, such as unexploded ordnance or fluid pathways, in the shallow subsurface. However, electromagnetic responses are difficult to interpret owing to the complexity of the underlying electrical conductivity structure. We show here that electromagnetic responses are fractal signals, reflecting a very rough distribution of electrical conductivity. Apparent conductivity profiles across a floodplain and a fractured sandstone aquifer both show that the fractal properties of the surface response depend on the complexity of the causative geological structure. Small‐scale fluctuations in the response due to geological noise are inherently reproducible, and are not caused by random instrumental or atmospheric effects as often assumed. New approaches to modeling are required to take full advantage of the rich information content of near‐surface electromagnetic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.