Abstract
As a typical representative of big data, geographic spatiotemporal big data present new features especially the non-stationary feature, bringing new challenges to mine correlation information. However, representation of instantaneous information is the main bottleneck for non-stationary data, but the traditional non-stationary analysis methods are limited by Heisenberg's uncertainty principle. Therefore, we firstly represent instantaneous frequency of geographic spatiotemporal big data based on Hilbert–Huang transform to overcome traditional methods' weakness. Secondly, we propose absolute entropy correlation analysis method based on KL divergence. Finally, we select five geographic factors to certify that the absolute entropy correlation analysis method is effective and distinguishable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.