Abstract
A recent interspecific study found Bergmann's size clines for Holarctic anurans and proposed an explanation based on heat balance to account for the pattern. However, this analysis was limited to cold temperate regions, and exploring the patterns in warmer tropical climates may reveal other factors that also influence anuran body size variation. We address this using a Cerrado anuran database. We examine the relationship between mean body size in a grid of 1° cells and environmental predictors and test the relative support for four hypotheses using an AIC‐based model selection approach. Also, we considered three different amphibian phylogenies to partition the phylogenetic and specific components of the interspecific variation in body size using a method analogous to phylogenetic eigen vector regression (PVR). To consider the potential effects of spatial autocorrelation we use eigenvector‐based spatial filters. We found the largest species inhabiting high water deficit areas in the northeast and the smallest in the wet southwest. Our results are consistent with the water availability hypothesis which, coupled with previous findings, suggests that the major determinant of interspecific body size variation in anurans switches from energy to water towards the equator. We propose that anuran body size gradients reflect effects of reduced surface to volume ratios in larger species to control both heat and water balance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.