Abstract

Shark dietary patterns can determine how they will respond to changes in prey availability and biodiversity. Geographic variation in diet can also indicate if species have unique structuring roles or feeding strategies in different environments. Unfortunately, little is known about the diet of most shark species and how diet varies over time and space. This study used stable isotope analysis to assess the diet of the Australian sharpnose shark (Rhizoprionodon taylori). Plasma and muscle δ13C and δ15N of R. taylori were compared with δ13C and δ15N baselines from multiple embayments to determine the isotopic niche, trophic position, and benthic and pelagic contributions to diet over time and space. Overall, R. taylori had a wide trophic position range and consumed prey from benthic and pelagic sources. However, there was geographic and temporal variation in trophic position and benthic and pelagic contributions. These findings indicate R. taylori is a dietary generalist, but different populations may have unique effects on distinct ecosystems. Geographic variation in diet also suggests R. taylori may be adaptive to changes in prey availability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.