Abstract
We investigate the concept of projective equivalence of connections in supergeometry. To this aim, we propose a definition for (super) geodesics on a supermanifold in which, as in the classical case, they are the projections of the integral curves of a vector field on the tangent bundle: the geodesic vector field associated with the connection. Our (super) geodesics possess the same properties as in the classical case: there exists a unique (super) geodesic satisfying a given initial condition and when the connection is metric, our supergeodesics coincide with the trajectories of a free particle with unit mass. Moreover, using our definition, we are able to establish Weyl’s characterization of projective equivalence in the super context: two torsion-free (super) connections define the same geodesics (up to reparametrizations) if and only if their difference tensor can be expressed by means of a (smooth, even, super) 1-form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.