Abstract

In this paper, we investigate the geodesic structure of Clifton–Barrow black hole space–time. Through the numerical analysis of the effective potential and the motion equation, the orbital types of test particles and photons and the corresponding orbital motion diagrams of each orbital types under certain conditions are obtained. We find that angular momentum [Formula: see text] and [Formula: see text] determine the existence of bound orbits and circular orbits. And we also find that the radius of unstable circular orbit decreases with increases in [Formula: see text] while the radius of stable circular orbit increases. Furthermore, as [Formula: see text] increases, the radius of unstable circular orbit increases, while the radius of stable circular orbit decreases. For null geodesic, parameters [Formula: see text] and [Formula: see text] do not affect the types of null orbits. The radius of the unstable circular orbits increases with the increase of [Formula: see text]. However, the radius of the unstable circular orbits remains unchanged as [Formula: see text] increases. Also, we show that the precession direction of the bound orbits of the test particles is counterclockwise for [Formula: see text], but clockwise with [Formula: see text]. Moreover, different energy values have an effect on the curvature of escape and absorb orbits curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.