Abstract

We study the free motion of a massive particle moving in the background of a Finslerian deformation of a plane gravitational wave in Einstein's general relativity. The deformation is a curved version of a one-parameter family of relativistic Finsler structures introduced by Bogoslovsky, which are invariant under a certain deformation of Cohen and Glashow's very special relativity group $\mathrm{ISIM}(2)$. The partially broken Carroll symmetry we derive using Baldwin-Jeffery-Rosen coordinates allows us to integrate the geodesics equations. The transverse coordinates of timelike Finsler geodesics are identical to those of the underlying plane gravitational wave for any value of the Bogoslovsky-Finsler parameter $b$. We then replace the underlying plane gravitational wave with a homogeneous $pp$-wave solution of the Einstein-Maxwell equations. We conclude by extending the theory to the Finsler-Friedmann-Lema\^{\i}tre model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.