Abstract
The Haisugou Mo deposit is located in the northern part of the Xilamulun Mo–Cu metallogenic belt in northeastern China. The Mo mineralization mainly occurs as quartz-molybdenite veins within the Haisugou granite, which was emplaced into rocks of the Early Permian Qingfengshan Formation. Zircon U–Pb dating by LA–ICP-MS of the granite yields a crystallization age of 137.6±0.9Ma, suggesting emplacement during the peak time of Mo mineralization in eastern China, broadly constrained to ca. 150–130Ma, when tectonic stresses shifted from compression to extension. Whole-rock geochemical data suggest that the granite belongs to the high-K calc-alkaline series, and is characterized by relatively high LREE; low HREE; depletion of Ti, Ba, and Nb; and a moderate negative Eu anomaly. The zircon εHf(t) and whole-rock εNd(t) values for the intrusion range from +4.5 to +10.0 and +0.2 to +1.6, respectively, indicating that the magma originated from the juvenile lower crust source derived from depleted mantle, with some component of ancient continental crust. The granite is also characterized by initial (87Sr/86Sr)i ratios ranging from 0.7040 to 0.7074, which suggest some contamination by the upper crust during the ascent of the primitive magma. Moreover, it can be recognized from the whole-rock major and trace element data that significant fractional crystallization occurred during magmatic evolution, with the separation of plagioclase and K-feldspar. Because Mo is an incompatible element and tends to concentrate in the melt during crystallization, fractionation processes likely played an important role in the formation of the Haisugou Mo deposit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.