Abstract

The Neoarchaean volcanic rocks of the Kilimafedha greenstone belt consist of three petrological types that are closely associated in space and time: the predominant intermediate volcanic rocks with intermediate calc-alkaline to tholeiitic affinities, the volumetrically minor tholeiitic basalts, and rhyolites. The tholeiitic basalts are characterized by slightly depleted LREE to nearly flat REE patterns with no Eu anomalies but have negative anomalies of Nb. The intermediate volcanic rocks exhibit very coherent, fractionated REE patterns, slightly negative to absent Eu anomalies, depletion in Nb, Ta, and Ti in multielement spidergrams, and enrichment of HFSE relative to MORB. Compared to the other two suites, the rhyolites are characterized by low concentrations of TiO2 and overall low abundances of total REE, as well as large negative Ti, Sr, and Eu anomalies. The three suites have a εNd (2.7 Ga) values in the range of −0.51 to +5.17. The geochemical features of the tholeiitic basalts are interpreted in terms of derivation from higher degrees of partial melting of a peridotite mantle wedge that has been variably metasomatized by aqueous fluids derived from dehydration of the subducting slab. The rocks showing intermediate affinities are interpreted to have been formed as differentiates of a primary magma formed later by lower degrees of partial melting of a garnet free mantle wedge that was strongly metasomatized by both fluid and melt derived from the subducting oceanic slab. The rhyolites are best interpreted as having been formed by shallow level fractional crystallization of the intermediate volcanic rocks involving plagioclase and Ti-rich phases like ilmenite and magnetite as well as REE-rich phases like apatite, zircon, monazite, and allanite. The close spatial association of the three petrological types in the Kilimafedha greenstone belt is interpreted as reflecting their formation in an evolving late Archaean island arc.

Highlights

  • IntroductionOther greenstone belts include the Sukumaland, Shinyanga-Malita, Nzega, Musoma-Mara, and Iramba-Sekenke [1, Figure 1]

  • The Kilimafedha greenstone belt of northeast Tanzania is one of the six greenstone belts of the Tanzania Craton occurring in the northern part of the country in the area south and east of the Lake Victoria

  • Trace element systematics of the tholeiites suggest that they were formed by shallow partial melting of a mantle wedge that has been variably metasomatized by an aqueous fluid in a convergent tectonic setting

Read more

Summary

Introduction

Other greenstone belts include the Sukumaland, Shinyanga-Malita, Nzega, Musoma-Mara, and Iramba-Sekenke [1, Figure 1] All of these greenstone belts are prospective for gold mineralization with several largescale mines in operation including the Bulyanhulu, Tulawaka, Geita, Buzwagi, North Mara, and Golden Pride (Figure 1). Because of their economic significance, the greenstone belts of the Tanzania Craton have recently been the focus of research on the processes that control gold mineralization (e.g., [2, 3]), lithostratigraphical relationships (e.g., [4, 5]), geochemistry, and geochronology (e.g., [6,7,8,9,10,11,12]).

Geological Setting
Sampling and Analytical Methodology
Geochemistry
Major and Trace Element Geochemistry
Alkaline
Petrogenesis
Findings
Comparison with Other Greenstone Belts of the Tanzania Craton
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.