Abstract

Major and trace element data of samples from the approximately 590 Ma Grenville dyke swarm, in the southeastern parts of the Canadian Shield, were used to evaluate the extent of crustal contamination of the dyke magma and to model its probable mantle source. The dyke rocks are mostly saturated, quartz tholeiites. A few samples represent transitional basalts. Their overall chemistries are similar to those of continental flood basalts. Their compositions resemble those of liquids initially produced in the garnet peridotite mantle zone and then subjected to polybaric fractionation. However, fractionation models fail to mass-balance Ti, Fe, K, and P. Geochemical and isotopic criteria indicate that crustal contamination was minimal. The incompatible elements Zr, Y, K, Rb, Nb, V, Ta, Hf, and Th show hyperbolic elemental ratio-ratio distributions indicative of mixing between two end-members. One end-member has elemental ratios similar to those of a “depleted” N-MORB source and the second of a P-MORB i.e. ◂ertile” or “plume” MORB source. The more enriched dyke compositions can be successfully reproduced by mixing models in the ratio of 6:1 between the most depleted “MORB-like” dyke magma and a liquid composition similar to metasomatic glass veinlets coexisting with mica peridotite mantle xenoliths, and subsequent crystal fractionation. The Grenville dykes are probably a synrift swarm that was emplaced along a rift arm related to an Iapetan rrr triple junction that is thought to have formed over a mantle plume. The chemistry of the dyke swarm is consistent with its derivation from a plume head, in that the minor enriched source can be identified with plume-source mantle and the major depleted source with entrained mantle. The magma probably originated in the upper cooler parts of the plume head.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.