Abstract

This study assessed the geochemistry and quality of groundwater in the Hongdunzi coal mining area in northwest China and investigated the mechanisms governing its hydrogeochemistry and the hydraulic connectivity between adjacent aquifers. Thirty-four groundwater samples were collected for physicochemical analyses and bivariate analyses were used to investigate groundwater quality evolution. The groundwater in the mine was determined to be neutral to slightly alkaline, with high levels of salinity and hardness; most samples were of SO4·Cl–Na type. Fluoride and nitrate pollution in the confined aquifers were identified, primarily sourced from coals. Natural geochemical processes, such as mineral dissolution, cation exchange, and groundwater evaporation, largely control groundwater chemistry. Anthropogenic inputs from agricultural and mining activities were also identified in both shallow unconfined aquifers and the deeper confined aquifers, respectively. It was determined that the middle confined aquifer has a high hydraulic connectivity with the lower coal-bearing aquifer due to developed fractures. Careful management of the overlying aquifers is required to avoid mine water inrush geohazards and groundwater quality deterioration. The groundwater in the mining area is generally of poor quality, and is unsuitable for direct human consumption or irrigation. Na+, SO42−, Cl−, F−, TH, TDS, NO3−, and CODMn are the major factors responsible for the poor quality of the phreatic water, while Na+, SO42−, F−, and TDS are the major constituents affecting the confined groundwater quality. This study is beneficial for understanding the impacts of coal mine development on groundwater quality, and safeguarding sustainable mining in arid areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.