Abstract

In this work we consider constructions of genus three curves $Y$ such that $\text{End}(\text{Jac} (Y))\otimes \mathbb{Q}$ contains the totally real cubic number field $\mathbb{Q}(\zeta _7 +\bar{\zeta}_7 )$. We construct explicit three-dimensional families whose general member is a nonhyperelliptic genus 3 curve with this property. The case when $Y$ is hyperelliptic was studied in \textsc{J. W. Hoffman, H. Wang}, $7$-gons and genus $3$ hyperelliptic curves, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales., Serie A. Matematicas \textbf{107} (2013), 35--52, and some nonhyperelliptic curves were constructed in \textsc{J. W. Hoffman, Z. Liang, Y. Sakai, H. Wang}, Genus $3$ curves whose Jacobians have endomorphisms by $\mathbb{Q}(\zeta _7 +\bar{\zeta}_7 )$, J. Symb. Comp. \textbf{74} (2016), 561--577.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.