Abstract
Standard procedures for entanglement detection assume that experimenters can exactly implement specific quantum measurements. Here, we depart from such idealizations and investigate, in both theory and experiment, the detection of genuine multipartite entanglement when measurements are subject to small imperfections. For arbitrary qubits number n, we construct multipartite entanglement witnesses where the detrimental influence of the imperfection is independent of n. In a tabletop four-partite photonic experiment, we demonstrate first how a small amount of alignment error can undermine the conclusions drawn from standard entanglement witnesses and then perform the correction analysis. Furthermore, since we consider quantum devices that are trusted but not perfectly controlled, we showcase advantages in terms of noise resilience as compared to device-independent models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.