Abstract
Rapid and accurate identification of an influenza outbreak is essential for patient care and treatment. We describe a next-generation sequencing (NGS)-based, unbiased deep sequencing method in clinical specimens to investigate an influenza outbreak. Nasopharyngeal swabs from patients were collected for molecular epidemiological analysis. Total RNA was sequenced by using the NGS technology as paired-end 250 bp reads. Total of 7 to 12 million reads were obtained. After mapping to the human reference genome, we analyzed the 3-4% of reads that originated from a non-human source. A BLAST search of the contigs reconstructed de novo revealed high sequence similarity with that of the pandemic H1N1 virus. In the phylogenetic analysis, the HA gene of our samples clustered closely with that of A/Senegal/VR785/2010(H1N1), A/Wisconsin/11/2013(H1N1), and A/Korea/01/2009(H1N1), and the NA gene of our samples clustered closely with A/Wisconsin/11/2013(H1N1). This study suggests that NGS-based unbiased sequencing can be effectively applied to investigate molecular characteristics of nosocomial influenza outbreak by using clinical specimens such as nasopharyngeal swabs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.