Abstract

Seven genotypes of French bean (Phaseolus vulgaris L.) were evaluated under semi-controlled conditions at the Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh to analyze genotypic variability in leaf water status under water stress. The plants were grown under two moisture regimes, viz. 80% field capacity (FC) and 50% FC throughout the growing season. The genotypes showed significant variation in water relation traits. Genotypes BB24 and BB43 maintained higher relative water content (RWC), but lower turgid weight/dry weight ratio (TW/DW) and water uptake capacity (WUC). When drought susceptibility index (DSI) among the genotypes was considered, BB24 was found the most tolerant to drought and BB04 was the most susceptible one. A close positive relationship between leaf TW/DW and DSI under drought was recorded (R 2 = 0.627). Leaf TW/DW was decreased considerably due to water stress by 10% in genotype BB24 followed by BB43 (13%), and both BARI bushbean-2 and BB04 (19%). Stomatal aperture and whole plant transpiration rate were found minimal in the BB24 and BB43 compared to that of BB04 and BARI bushbean-2. Considering these water relation traits, genotypes BB24 and BB43 may be considered as relatively tolerant to tissue dehydration. The study also revealed that the TW/DW, WUC, stomatal aperture, and whole plant transpiration rate was negatively and significantly associated with yield; however, the RWC was positively correlated with yield under water stress conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.