Abstract

Due to the widespread use of silver nanoparticles in consumer products, the toxicity of silver nanoparticles has also been studied in relation to their application. However, most genotoxicity studies of silver nanoparticles have been performed in vitro. Therefore, this study evaluated the DNA damage to lung cells caused by repeated inhalation of silver nanoparticles. Male Sprague Dawley rats were exposed to silver nanoparticles for 12 weeks in a whole-body inhalation chamber. The animals were divided into one control group and three dose groups that were exposed to silver nanoparticles (14–15 nm diameter) at concentrations of 0.66 × 106 particles/cm3 (49 μg/m3, low dose), 1.41 × 106 particles/cm3 (117 μg/m3, middle dose), and 3.24 × 106 particles /cm3 (381 μg/m3, high dose), respectively, for six hours/day over 12 weeks. The rats were sacrificed after the 12-week exposure period and the DNA damage assessed using a Comet assay of cells obtained from the right lungs. The olive tail moment values were 2.93 ± 0.19, 3.81 ± 0.23, 3.40 ± 0.22, and 5.16 ± 0.32 for the control, low-, middle-, and high-dose groups, respectively. Although no dose-dependent results were observed, a significant increase in the level of DNA damage was noted for the high-dose group.

Highlights

  • The expanding widespread use of silver nanoparticles in consumer products covers bedding, washers, water purification, toothpaste, shampoo and rinse, nipples and nursing bottles, fabrics, deodorants, filters, kitchen utensils, toys, humidifiers, printed electronics, and biocides [1]

  • While the exposure period produced no significant changes in the body weights (Table 1), there were significant changes (p < 0.01–p < 0.05) in the weights of the right and left lungs for the high-dose group when compared with the fresh-air control and low-dose group as previously published [6] (Table S1)

  • The comet assay was conducted on cells from the right lungs of the male rats exposed to the silver nanoparticles for 12 weeks

Read more

Summary

Introduction

The expanding widespread use of silver nanoparticles in consumer products covers bedding, washers, water purification, toothpaste, shampoo and rinse, nipples and nursing bottles, fabrics, deodorants, filters, kitchen utensils, toys, humidifiers, printed electronics, and biocides [1]. In previous studies, using male and female rats, 90-day subchronic inhalation exposure to silver nanoparticles was found to induce infiltrate mixed cells and chronic alveolar inflammation, along with thickened alveolar walls, small granulomatous lesions in the lungs, and a dose-dependent increase in bile-duct hyperplasia [4,5]. These studies showed that the target organs for the silver nanoparticles were the lungs and liver [5], and lung function changes were observed [4]. The rat lung cells were isolated and the genotoxicity evaluated using a Comet assay

Animal Observations
Silver Nanoparticle Generation and Particle Characterization
Histopathogical Evaluation
Silver Concentration in Lungs
Comet Assay
Other Assays
Generation of Silver Nanoparticles
Monitoring of Inhalation Chamber and Analysis of Silver Nanoparticles
Animals and Conditions
Histopathological Evaluation
Cell Isolation
Statistical Analysis
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.