Abstract

Over half of the world's arable land is acidic, which constrains cereal production. In South America, different rice-growing regions (Cerrado in Brazil and Llanos in Colombia and Venezuela) are particularly affected due to high aluminum toxicity levels. For this reason, efforts have been made to breed for tolerance to aluminum toxicity using synthetic populations. The breeding program of CIAT-CIRAD is a good example of the use of recurrent selection to increase productivity for the Llanos in Colombia. In this study, we evaluated the performance of genomic prediction models to optimize the breeding scheme by hastening the development of an improved synthetic population and elite lines. We characterized 334 families at the S0:4 generation in two conditions. One condition was the control, managed with liming, while the other had high aluminum toxicity. Four traits were considered: days to flowering (FL), plant height (PH), grain yield (YLD), and zinc concentration in the polished grain (ZN). The population presented a high tolerance to aluminum toxicity, with more than 72% of the families showing a higher yield under aluminum conditions. The performance of the families under the aluminum toxicity condition was predicted using four different models: a single-environment model and three multi-environment models. The multi-environment models differed in the way they integrated genotype-by-environment interactions. The best predictive abilities were achieved using multi-environment models: 0.67 for FL, 0.60 for PH, 0.53 for YLD, and 0.65 for ZN. The gain of multi-environment over single-environment models ranged from 71% for YLD to 430% for FL. The selection of the best-performing families based on multi-trait indices, including the four traits mentioned above, facilitated the identification of suitable families for recombination. This information will be used to develop a new cycle of recurrent selection through genomic selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.