Abstract

BackgroundCHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a high prevalence in the Netherlands. We performed copy number and gene expression profiling to investigate whether CHEK2*1100delC breast cancers harbor characteristic genomic aberrations, as seen for BRCA1 mutated breast cancers.MethodsWe performed high-resolution SNP array and gene expression profiling of 120 familial breast carcinomas selected from a larger cohort of 155 familial breast tumors, including BRCA1, BRCA2, and CHEK2 mutant tumors. Gene expression analyses based on a mRNA immune signature was used to identify samples with relative low amounts of tumor infiltrating lymphocytes (TILs), which were previously found to disturb tumor copy number and LOH (loss of heterozygosity) profiling. We specifically compared the genomic and gene expression profiles of CHEK2*1100delC breast cancers (n = 14) with BRCAX (familial non-BRCA1/BRCA2/CHEK2*1100delC mutated) breast cancers (n = 34) of the luminal intrinsic subtypes for which both SNP-array and gene expression data is available.ResultsHigh amounts of TILs were found in a relatively small number of luminal breast cancers as compared to breast cancers of the basal-like subtype. As expected, these samples mostly have very few copy number aberrations and no detectable regions of LOH. By unsupervised hierarchical clustering of copy number data we observed a great degree of heterogeneity amongst the CHEK2*1100delC breast cancers, comparable to the BRCAX breast cancers. Furthermore, copy number aberrations were mostly seen at low frequencies in both the CHEK2*1100delC and BRCAX group of breast cancers. However, supervised class comparison identified copy number loss of chromosomal arm 1p to be associated with CHEK2*1100delC status.ConclusionsIn conclusion, in contrast to basal-like BRCA1 mutated breast cancers, no apparent specific somatic copy number aberration (CNA) profile for CHEK2*1100delC breast cancers was found. With the possible exception of copy number loss of chromosomal arm 1p in a subset of tumors, which might be involved in CHEK2 tumorigenesis. This difference in CNAs profiles might be explained by the need for BRCA1-deficient tumor cells to acquire survival factors, by for example specific copy number aberrations, to expand. Such factors may not be needed for breast tumors with a defect in a non-essential gene such as CHEK2.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1880-y) contains supplementary material, which is available to authorized users.

Highlights

  • CHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a high prevalence in the Netherlands

  • Sample selection for low amount of tumor infiltrating lymphocytes (TILs) To select for samples with low number of TILs, hierarchical clustering of expression data of all 120 breast carcinomas based on the mRNA immune signature was used (Fig. 1a)

  • Intrinsic sub-typing of breast carcinomas based on global gene expression profiles has revealed large differences between the basal-like, ERBB2/Her2Neu and luminal subtypes regarding patterns of copy number aberration (CNA)'s [13, 23,24,25]

Read more

Summary

Introduction

CHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a high prevalence in the Netherlands. CHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a relatively high prevalence in the Netherlands of 1.1 % in the general population, 2.5 % in unselected breast cancer cases, and 4.9 % in familial breast cancer cases. The function of CHEK2 is abrogated by the 1100*delC frameshift mutation which causes a premature translation stop in the kinase domain of the protein. Both the mRNA, which is degraded through nonsense-mediated mRNA decay, as well as the resulting truncated protein are highly unstable [7, 8]. Gene expression profiling assigns tumors from CHEK2 mutation carriers to the luminal intrinsic subtypes [12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.